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Abstract

Clustering and ranking have been successfully applied inde-

pendently to homogeneous information networks, containing

only one type of objects. However, real-world information

networks are oftentimes heterogeneous, containing multiple

types of objects and links. Recent research has shown that

clustering and ranking can actually mutually enhance each

other, and several techniques have been developed to inte-

grate clustering and ranking together on a heterogeneous in-

formation network. To the best our knowledge, however, al-

l of such techniques assume the network follows a certain

schema. In this paper, we propose a probabilistic genera-

tive model that simultaneously achieves clustering and rank-

ing on a heterogeneous network that can follow arbitrary

schema, where the edges from different types are sampled

from a Poisson distribution with the parameters determined

by the ranking scores of the nodes in each cluster. A varia-

tional Bayesian inference method is proposed to learn these

parameters, which can be used to output ranking and clus-

ters simultaneously. Our method is evaluated on both syn-

thetic and real-world networks extracted from the DBLP and

YELP data. Experimental results show that our method out-

performs the state-of-the-art baselines.

1 Introduction

Information networks are oftentimes used to represent ob-

jects and their interactions in real-world systems, where each

object is represented by a vertex and the relationship between

two objects is represented by an edge. Usually network-

s are assumed involving only one type of vertices and one

type of edges between vertices, called homogeneous infor-

mation networks. A friendship network is a typical exam-

ple, in which each individual is represented by a vertex and

friendship is represented by edges between vertices.

In real-world settings, however, there might exist dif-

ferent types of relationships between different types of ob-

jects. We call such networks heterogeneous information

networks. One example of heterogeneous information net-
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Figure 1: One example of a heterogeneous information network is

the bibliographic network constructed from the DBLP database.

works is the bibliographic network constructed from the D-

BLP database1, which is illustrated in Figure 1. The net-

work contains three types of vertices: authors(A), words(W)

and venues(V). Edges exist between authors representing co-

authorship, between authors and venues representing authors

publishing papers in venues, between authors and words rep-

resenting authors using words, and between words and v-

enues representing words appearing in venues. Note that, in

this example, there are multi-edges between the same pair

of vertices, since there might be more than one relationships

between the same pair of objects. In this paper, we do not

consider self-edges that connect a vertex to itself.

In information networks, an object is usually more like-

ly to connect to a certain group of objects with particular

characteristics, and therefore, objects form clusters or com-

munities within the network. Cluster analysis [1–3] or com-

munity detection [4–8] techniques are developed to reveal

such structures in networks. In addition, it is very helpful to

identify the important vertices in a network. Ranking meth-

ods [9–11] are thus developed to disclose the relative im-

portance of each vertex. Both ranking and clustering draw

plenty of attention from the research communities, which are

traditionally studied independently.

Combining clustering and ranking together usually

achieves better results, as shown in RankClus [12] and Net-

Clus [13], where clustering and ranking are combined to-

gether for analyzing heterogeneous networks. However, both

algorithms assume that the heterogeneous network follows

some particular schema. For example, RankClus assumes

1http://www.informatik.uni-trier.de/˜ley/db/
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that the network is bi-typed, and NetClus assumes the net-

work follows a star network schema. These two methods can

not be applied to networks with more complex structures.

We overcome this limitation by developing a Gamma-

Poisson generative model, called GPNRankClus (Gamma-

Poisson Network Model for Ranking and Clustering),

which models the probability of each type of edges with-

out assuming any schema information of the network. To

achieve this, we assign each vertex a positive unbounded

“ranking score” for each of the clusters. Therefore, the rank-

ing for vertices of a given type in a given cluster can be esti-

mated by sorting the scores associated with that cluster, and

the clustering result for a given vertex is given by comparing

the scores for that vertex across different clusters. Further-

more, we assume that edges in the network follow Poisson

distributions that are parameterized by these scores as well

as the link type. By using variational Bayesian inference,

we can evaluate the posterior scores for these parameters ac-

cording to the observed network. Our method is tested on

both synthetic and real-world networks. Experimental re-

sults show that our method outperforms the state-of-the-art

baselines.

The rest of the paper is organized as follows. We

introduce the related work in the next section. Our model is

introduced in Section 3, and the interpretation about why and

when our model works is provided in Section 4. In Section 5,

we present in detail the variational inference for our model.

In Section 6, we illustrate the experimental results. The

paper ends with a conclusion in Section 7.

2 Related Work

There has been an increasing amount of interest and work in

automatically detecting clusters/communities and in ranking

vertices given a network. However, most of the existing work

can only perform either clustering or ranking.

There are a variety of methods that discovers commu-

nities in a network by clustering. Spectral clustering [14] is

a method that can be applied to the network data by mak-

ing use of the eigenvectors of the Laplacian matrix, which is

derived from the adjacency matrix of the network. Affinity

propagation [2] finds the cluster structure in the network by

recursively updating the “responsibility” and “availability”

messages that are exchanged between data points in the net-

work. SCAN (Structural Clustering Algorithm for Network-

s)[1] clusters the network data by observing how the nodes

share neighbors. Stochastic blockmodels [5] is a probabilis-

tic generative model that assumes each vertex in a binary

network belongs to one of the clusters. The model is further

extended by introducing mixed membership [6], overlapping

clusters [7] and multi-edges [8]. Most of these studies focus

on clustering in homogeneous networks, but there also exists

some research that extends these methods to heterogeneous

networks. For example, in [3], spectral clustering is extended

to cluster multi-type relational data.

The most well-known algorithms for ranking is HITS

[9] and PageRank [10]. HITS assigns each vertex in the net-

work an authority score, which estimates the value of the

content of the page, and a hub score, which evaluates the

value of the links of the page to other pages. PageRank as-

sumes a random surfer model, and ranks each page accord-

ing to a score that represents the average time that a surfer

who randomly clicking on links will arrive on that page. Re-

cently, some ranking algorithms are proposed to address the

heterogeneity of the network. For example, PopRank [11]

ranks the popularity of objects in a heterogeneous network

via knowledge propagation.

Most of these methods treat ranking and clustering as in-

dependent tasks. But recent studies have shown that ranking

and clustering can mutually enhance each other. For exam-

ple, RankClus [12] and NetClus [13] integrate clustering and

ranking together on heterogeneous networks, and achieve

better performance in both tasks. In both work, each ver-

tex was assigned two dependent vectors, one representing

the probability that the vertex belongs to each cluster and

the other representing the within-cluster rank in each clus-

ter for that vertex. As mentioned in Section 1, both methods

are only applicable to some specified network schema, i.e.,

bi-typed schema and star network schema, respectively. In

this paper, we propose GPNRankClus, which performs both

ranking and clustering a network simultaneously. Moreover,

unlike RankClus and NetClus, our proposed model can han-

dle heterogeneous networks for any type of schema.

3 The GPNRankClus Model

Let us start by defining our notations. We assume that

there are M different types of vertices in the network,

denoted as {Tm}Mm=1. We denote each vertex of type Tm

as {v
(Tm)
n }

NTm

n=1 , where NTm
denotes the number of vertices

in type Tm. The total number of vertices in the network is

given by N =
∑M

m=1 NTm
. Multiple edges are allowed

between vertices. We denote the number of edges between

vertices v
(Ta)
i and v

(Tb)
j using W

(Ta,Tb)
ij , where Ta, Tb ∈

{Tm}Mm=1, 1 ≤ i ≤ NTa
, 1 ≤ j ≤ NTb

. The edges of

type (Ta, Tb) can be summarized in a matrix W (Ta,Tb) ∈

R
NTa×NTb such that W

(Ta,Tb)
ij = W

(Tb,Ta)
ji .

In this paper, our goal is to simultaneously solve clus-

tering and ranking problem in heterogeneous networks; i.e.,

given the vertices and edges of different types, we want to

simultaneously achieve the following goals:

1. Clustering: We want to find a partition of the vertices,

denoted by K non-overlapping sets {Ck}
K
k=1, such that

W
(Ta,Tb)
ij is likely to have large values if and only

if v
(Ta)
i and v

(Tb)
j belong to the same cluster, i.e.,

v
(Ta)
i , v

(Tb)
j ∈ Ck for a certain 1 ≤ k ≤ K.
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2. Ranking: We want to find an approach to measure the

relative importance, in terms of popularity (number of

occurrence), of each vertex in each cluster.

One intuitive solution to solve this problem is to assign a

clustering vector and a within-cluster ranking vector to each

vertex, as described in RankClus [12] and NetClus [13]. In

GPNRankClus, we adopt a different approach that assigns

each vertex v
(Tm)
n one positive K-element ranking score

vector, denoted by r
(Tm)
n = {r

(Tm)
nk }Kk=1, that contains both

clustering and ranking information, such that

v(Tm)
n ∈ Ck ⇔ k = argmaxl(r

(Tm)
nl )(3.1)

rankk(v
(Tm)
i ) < rankk(v

(Tm)
j ) ⇔ r

(Tm)
ik > r

(Tm)
jk(3.2)

where rankk(v
(Tm)
n ) is a positive integer that defines the

rank of the vertex v
(Tm)
n for type Tm in the k-th cluster, such

that rankk(v
(Tm)
i ) < rankk(v

(Tm)
j ) if and only if v

(Tm)
i is

more important than v
(Tm)
j in the k-th cluster. Note that

since it is usually not meaningful to compare the importance

for vertices from different types, the ranks are defined within

each type for each cluster independently. Different from

RankClus and NetClus, we let the ranking score r
(Tm)
nk be

unbounded positive real numbers rather than probabilities

that sum up to 1, because we notice that one object can have

high ranking scores in multiple clusters.

Due to this requirement, we model the ranking score for

each object in each cluster as a gamma distribution, which

defines the probability over positive real numbers:

(3.3) r
(Tm)
nk ∼ Gamma(αr, βr).

where θr = (αr, βr) are parameters that determine the

shape of a Gamma distribution, and the ratio αr

βr
defines its

expected value.

Next, we model the probability of observed links in

the network according to these ranking score vectors. As

we allow multiple edges between two vertices, we treat the

connections between vertices as repeated events, and the

number of connections W
(Ta,Tb)
ij can be naturally modeled

as a Poisson distribution:

(3.4) W
(Ta,Tb)
ij ∼ Pois(λ(Ta,Tb)(r

(Ta)
i · r

(Ta)
j ))

where λ(Ta,Tb) is a positive parameter that represents the

strength for a specified edge type (Ta, Tb) and r
(Ta)
i · r

(Tb)
j

represents the dot product of the two ranking score vectors.

We can see that the parameter of the Possion distribution

is determined by two parts: (1) λ(Ta,Tb), the intensity of

edges from type (Ta, Tb), as some relation type might tend

to generate more links between vertices than others; and (2)

r
(Ta)
i · r

(Tb)
j , the dot product of the ranking score vectors

of the two vertices. In order to have a large dot product

θr

r
(Ta)
ik

N ×K

r
(Tb)
jk

N ×K

W
(Ta,Tb)
ij

N2

λ
(Ta,Tb)
Te

M2

θλ

Figure 2: Directed graphical model for the proposed method.

The arrows in the graph represent the dependency between random

variables.

value, vertices v
(Ta)
i and v

(Tb)
j need to both have significant

influence in at least one of the cluster Ck, i.e., r
(Ta)
ik × r

(Tb)
jk

is large. This satisfies the clustering structure assumption we

made. A more detailed interpretation of the dot product is

introduced in Section 4.

Note that, in an undirected network, relationship-

s (Ta, Tb) are symmetric. Therefore, we let λ(Tb,Ta) =
λ(Ta,Tb). If there are no edges for type (Ta, Tb), we let

λ(Ta,Tb) = 0. We assume each non-zero λ(Ta,Tb) also fol-

lows a gamma distribution, parameterized by θλ = (αλ, βλ):

(3.5) λ(Ta,Tb) ∼ Gamma(αλ, βλ)

Equations (3.3), (3.4) and (3.5) completely define our

generative heterogeneous network, which is summarized in

a directed graphical model in Figure 2 and described as

follows:

1. For each type Tm = T1, T2, . . . , TM ,

For each vertex n = 1, . . . NTm ,

For each cluster k = 1, . . . ,K,

Draw r
(Tm)
nk ∼ Gamma(αr, βr)

2. For each non-zero edge type (Ta, Tb), 1 ≤ a ≤ b ≤M ,

Draw λ(Ta,Tb) ∼ Gamma(αλ, βλ)

Assign λ(Tb,Ta) = λ(Ta,Tb)

3. For each pair of different vertices (v
(Ta)
i , v

(Tb)
j ), s.t. v

(Ta)
i 6=

v
(Tb)
j

Draw W
(Ta,Tb)
ij ∼ Pois(λ(Ta,Tb)(r

(Ta)
i · r

(Tb)
j ))

Assign W
(Tb,Ta)
ji = W

(Ta,Tb)
ij

Note that since we are considering an undirected net-

work, λ(Ta, Tb) and W
(Ta,Tb)
ij are symmetric.

4 Interpretation of the Model

In this section, we explain why and how our model can

achieve clustering and ranking within a heterogeneous net-

work from a geometric perspective. We start by examining

our model in the ideal case where clusters are well-separated.
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4.1 The Ideal Case In Equation (3.4), we assume that

W
(Ta,Tb)
ij follows a Poisson Distribution parameterized by

the intensity parameter λ(Ta,Tb)(r
(Ta)
i ·r

(Tb)
j ). The dot product

can be expressed as

(4.6) r
(Ta)
i · r

(Tb)
j = cos θ × ||r

(Ta)
i || × ||r

(Tb)
j ||

where θ denotes the angle between the vector r
(Ta)
i and r

(Tb)
j ,

and || · || represents the Euclidean norm of a vector. In order

to have a high occurrence of edges between vertices v
(Ta)
i

and v
(Tb)
j , our model imposes that the two vertices need to

be similar such that (1) they are in the same cluster (i.e.,

cos(θ) is large), and (2) the popularity of both v
(Ta)
i and v

(Tb)
j

need to be high (i.e., both ||r
(Ta)
i || and ||r

(Tb)
j || are large).

Therefore, having the intensity parameter to be proportional

to the dot product, the impact of clustering and ranking to

link generation are both considered.

Now assume that the network can be divided into two

well-separated clusters C1 and C2, meaning that the vertices

within clusters C1 and C2 are well connected and that there

are almost no edges between clusters C1 and C2. If vertices

v
(Ta)
i and v

(Ta)
j are from the same cluster (e.g., v

(Ta)
i , v

(Tb)
j ∈

C1), we expect cos θ to be large, i.e., ri and rj are almost

parallel with each other (e.g., vectors (1, 0) and (2, 0) in R
2).

If v
(Ta)
i and v

(Tb)
j are from different clusters (e.g., v

(Ta)
i ∈

C1, v
(Tb)
j ∈ C2 ), we expect cos θ to be very small, i.e., the

latent vectors r
(Ta)
i and r

(Tb)
j are almost perpendicular with

each other (e.g., (1, 0) and (0, 1) in R
2). Because of the

property described above, we can represent all the clusters by

a set of perpendicular unit vectors {ck}
K
k=1, each of which

can be considered as the center of all the r
(Tm)
n vectors in

that cluster. Since we assume all the elements of r
(Tm)
n are

always positive, the only set of K unit vectors in the space

R
+
0

K
that are perpendicular to each other are the set that are

located at the K axes, which is illustrated in R
2 in Figure

3. Therefore, if we choose the dimensionality of the vectors

r
(Tm)
n to be equal to the number of clusters K, the vectors

{ck}
K
k=1 will be located at the axes. In this case, the cluster

that vertex v
(Tm)
n belongs to is given by

(4.7) v(Tm)
n ∈ Ck, where k = argmaxl(r

(Tm)
nl ).

Because the number of links that connect to a given

vertex v
(Tm)
n depends on the value of ||r

(Tm)
n ||, we can

determine the relative popularity of v
(Tm)
i in each cluster

by observing the projection of the vector r
(Tm)
n to the

corresponding axis. Therefore, the rank for vertex v
(Tm)
n

within vertices of type Tm in cluster k is given by

(4.8) rankk(v
(Tm)
n ) = argsorti(r

(Tm)
ik ).

4.2 The Non-Ideal Case In a non-ideal case, the vectors

in the same cluster are not parallel to each other, and the

Figure 3: Plot of ranking score vectors in R
2 space. Assuming

that c1 and c2 are orthogonal, if c1 is not aligned with one of the

axes, then either c21 < 0 or c22 < 0, which contradicts with the

assumption c2 ∈ R
+
0

2
. Therefore, both c1 and c2 have to align

with the axes.

vectors in different clusters will no longer be perpendicular.

Thus, the vectors represented by cluster {ck}
K
k=1 are not

perpendicular with each other and can locate arbitrarily in the

space. We solve this problem by introducing “seeds”, i.e., for

each cluster 1 ≤ k ≤ K, we seed (select) L representative

objects of one or more types, which are indexed by {Skl}
L
l=1

(we only used 1 seed for each cluster in our experiments).

We incorporate this seed information through their respective

prior distributions. Rather than assign the default prior for

r as described in Equation (3.3), we assign a special prior

distribution for these “seeds” such that

(4.9)
rSkl,k ∼ Gamma(αS0, βS0)

rSkl,t ∼ Gamma(αS1, βS1) for all t 6= k

where αS0, βS0, αS1 and βS1 are pre-defined hyper-

parameters that satisfies αS0

βS0
> αr

βr
> αS1

βS1
. Note that,

the expected value of a gamma distribution Gamma(α, β)
is given by α

β
. The above constraint is equivalent to force

E[rSkl,k] > E[rNS,j ] > E[rSkl,t], where we use rNS,j to

represent the ranking score for arbitrary data points that are

not seeds. By assigning such special priors for the “seeds,”

rSkl
will tend to have a large value at the direction of the

k-th axis, and to have a small value at all the orthogonal di-

rections. Thus, we can force the seeds for the k-th cluster

close to the k-th axis. Since the r
(Tm)
n vector for each vertex

in a cluster tends to be parallel to each other, we now are able

to force r
(Tm)
n vectors for objects in the k-th cluster close to

the k-th axis.

In practice we choose αS0 = αS1 = αr = βr = 1,

βS0 = 0.01 and βS0 = 100. We choose α’s to be small

because this is a prior distribution, and we do not want to

be too confident about the choice of the expected values

before observing data. We make E[rSkl,k] = αS0

βS0
= 100

and E[rSkl,t] =
αS0

βS0
= 0.01 such that the seeds are more

likely to be located at the axes. Note that the posterior

distribution tends to differ significantly from these values

especially when we choose small α’s.

After introducing seeds, the object rank in each cluster

can be obtained from Equation (4.8). However, now it is

tricky to get the clustering results, as the connectivity in each

cluster might differ, i.e., some clusters might be more well-
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connected than others. If we simply follow Equation (4.7),

we will tend to misclassify objects in the less-connected

cluster (tends to have a lower ranking score) into the well-

connected cluster (tends to have a higher ranking score).

Therefore, we want to normalize the clustering results with

respect to the degrees in each of the clusters. As a result,

rather than directly utilize the vector r
(Tm)
n , we introduce a

heuristic by normalizing the vector as follows

(4.10) v(Tm)
n ∈ Ck, where k = argmaxl(

r
(Tm)
nl

r̃
(Tm)
·l

)

where r̃
(Tm)
·l denotes the median value for all the l-th element

of vectors r
(Tm)
n , 1 ≤ n ≤ NTm

. Note that for vertices of d-

ifferent types, the normalization constant in the denominator

in Equation (4.10) are different. We choose to normalize the

vectors with respect to the median values rather than mean or

the maximum, because the values in the vector differ signifi-

cantly on magnitude, ranging from 102 to 10−2, and median

is less sensitive to the skewness of the data.

5 Variational Inference

In this section, we introduce how the parameters in the pro-

posed GPNRankClus model can be learned via a variational

inference algorithm. The joint probability of our model as

shown in Figure 2 is given by

(5.11)

p(λ,R,W |θR, θλ)

=

v
(Ta)
i

6=v
(Tb)
j

∏

a,b,i,j

p(W
(Ta,Tb)
ij |λ(Ta,Tb), r

(Ta)
i , r

(Ta)
j )

M
∏

m=1

NTm
∏

n=1

K
∏

k=1

p(r
(Tm)
nk |θR)

M
∏

a=1

a
∏

b=1

p(λ(Ta,Tb)|θλ)

We now learn the latent variables R and parameters λ using

variational inference [15].

5.1 The Variational Distribution It is computation-

ally intractable to evaluate the marginal likelihood,

log p(W|θR, θλ) directly. We use variational methods to ap-

proximate the marginal likelihood by maximizing a lower

bound, L(q), on the true log marginal likelihood [16], which

can be obtained by using Jensen’s inequality as follows:

(5.12)

log p(W|θr, θλ) ≥ L(q) =

∫

q(λ,R) log
p(λ,R,W )

q(λ,R)
dλdR

=

v
(Ta)
i

6=v
(Tb)
j

∑

a,b,i,j

ER,λ[log p(W
(Ta,Tb)
ij |λ(Ta,Tb)(r

(Ta)
i · r

(Tb)
j ))]

+

M
∑

m=1

NTm
∑

n=1

K
∑

k=1

ER[log p(r
(Tm)
nk |θr)]

+

M
∑

a=1

a
∑

b=1

Eλ[log p(λ(Ta,Tb)|θλ)] +H(q(λ,R))

where q(λ,R) is an approximate variational distribu-

tion of the posterior probability p(λ,R|W, θr, θλ) and

H(q(λ,R)) denotes the entropy of distribution q(λ,R). We

apply mean-field approximation and assume that the varia-

tional distribution can be factorized into disjoint groups, such

that

(5.13)

q(λ,R) =

(

M
∏

a=1

a
∏

b=1

q(λ(Ta,Tb))

)





M
∏

m=1

NTm
∏

n=1

K
∏

k=1

q(r
(Tm)
nk )





5.2 Auxiliary Variables With this approximation, all the

expected values in Equation (5.12) are straightforward to

compute, except for ER,λ[log p(W
(Ta,Tb)
ij |λ(Ta,Tb)(r

(Ta)
i ·

r
(Tb)
j ))] , which is given by

(5.14)

ER,λ[log p(W
(Ta,Tb)
ij |λ(Ta,Tb)(r

(Ta)
i · r

(Tb)
j ))]

=W
(Ta,Tb)
ij Eλ[log λ(Ta,Tb)] +W

(Ta,Tb)
ij ER[log

K
∑

k=1

r
(Ta)
ik r

(Tb)
jk ]

− Eλ[λ(Ta,Tb)]

K
∑

k=1

ER[r
(Ta)
ik ]ER[r

(Tb)
jk ] + const

where const represents constant terms that do not contain

the variables we are interested in. It is difficult to directly

estimate ER[log
∑K

k=1 r
(Ta)
ik r

(Tb)
jk ]. Therefore, we introduce

auxiliary variables y
(Ta,Tb)
ij that follow multivariate distribu-

tions denoted by q
y
(Ta,Tb)

ij

(y) and apply Jensen’s inequality

again, such that

(5.15)

ER[log

K
∑

k=1

r
(Ta)
ik r

(Tb)
jk ]

=ER[log







K
∑

k=1

q
y
(Ta,Tb)
ij

(k)
rikrjk

q
y
(Ta,Tb)
ij

(k)







]

≥ER[E
y
(Ta,Tb)
ij

[log(r
(Ta)
iy r

(Tb)
jy )]] +H(q

y
(Ta,Tb)
ij

)

=E
R,y

(Ta,Tb)
ij

[log r
(Ta)
iy ] + E

R,y
(Ta,Tb)
ij

[log r
(Tb)
jy ] +H(q

y
(Ta,Tb)
ij

)

where H(q
y
(Ta,Tb)

ij

) denotes the entropy of the distribution

q
y
(Ta,Tb)

ij

(y).

By plugging Equation (5.15) into (5.14) and then into

(5.12), we get a looser lower bound L′(q). We approximately

maximize the marginal likelihood by maximizing this lower

bound L′(q).
We first take the derivative of L′(q) with respect to

q
y
(Ta,Tb)

ij

(y) to find the optimal q∗
y
(Ta,Tb)

ij

(y) that maximizes

the lower bound, which is given by

(5.16) q∗
y
(Ta,Tb)

ij

(y) ∝ exp{ER[log r
(Ta)
iy ] + ER[log r

(Tb)
jy ]}

The normalization factor can be calculated by ensuring
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∑K

y=1 q
∗

y
(Ta,Tb)

ij

(y) = 1.

5.3 Optimal Variational Distributions With the factor-

ized mean-field approximation above, we can obtain the op-

timal distributions for q that maximize the lower bound, by

applying the following Equation [15]:

(5.17) log q∗
Zj
(Z) = EZ

−j
[log p(X,Z)] + const,

where Z represents the latent variables, X represents the ob-

servations, p(X,Z) represents the joint distribution , q∗
Zj
(Z)

represents the optimal distribution for the latent variable Zj

that maximizes the lower bound, and EZ
−j

represents that

the expected value is taken with respect to all other laten-

t variables except for Zj . In our model, X = W and

Z = {R,λ}.

By applying Equation (5.17), we observe that the op-

timal distribution for λ(Ta,Tb) is a gamma distribution such

that q∗
λ
(λ(Ta,Tb)) = Gamma(α(Ta,Tb), β(Ta,Tb)), where

(5.18)

α(Ta,Tb)
= αλ +

v
(Ta)
i

6=v
(Tb)
j∑

i,j

W
(Ta,Tb)
ij

β(Ta,Tb)
= βλ +

v
(Ta)
i

6=v
(Tb)
j∑

i,j

K∑

k=1

ER[r
(Ta)
ik

]ER[r
(Tb)
jk

]

The optimal distribution for r
(Tm)
nk is a gamma distribu-

tion such that q∗
R
(r

(Tm)
nk ) = Gamma(α

(Tm)
nk , β

(Tm)
nk ), where

(5.19)

α
(Tm)
nk

= αr +

M∑

a=1

NTa∑

i=1

W
(Tm,Ta)
ni q

y
(Tm,Ta)
ni

(k)

β
(Tm)
nk

= βr +

v
(Tm)
n 6=v

(Ta)
i∑

a,i

Eλ[λ(Tm,Ta)]ER
−n

[r
(Ta)
ik

]

The expected values are given as:

(5.20)

ER[r
(Tm)
nk ] =

α
(Tm)
nk

β
(Tm)
nk

ER[log r
(Tm)
nk ] = Ψ(α

(Tm)
nk )− log βnk(Tm)

Eλ[λ(Ta,Tb)] =
α(Ta,Tb)

β(Ta,Tb)

Eλ[log λ(Ta,Tb)] = Ψ(α(Ta,Tb))− log β(Ta,Tb)

where Ψ(·) represents the digamma function, i.e., the first

derivative of the logarithm of a gamma function. We plug in

these expected values into the update equations (5.16), (5.18)

and (5.19), when updating the variational distributions. Be-

cause each time when we apply each of these update equa-

tions, the lower bound L′(q) increases, the algorithm is guar-

anteed to converge.

We repeat the update for each of the variational distribu-

tion until the algorithm converges. In practice, we stop the

algorithm when the increase of lower bound L′(q) during an

update is less than 10−5 of its original value. Algorithm 1

provides a pseudo-code and summary of our approach.

Algorithm 1 Variational Inference for GPNRankClus

1: repeat

2: for each (a, b, i, j) s.t. W
(Ta,Tb)
ij > 0 do

3: Update q∗yij (yij) according to Equation (5.16)

4: Normalize q∗yij (yij)
5: end for

6: for m← 1 to M do

7: for r ← 1 to NTm do

8: for k ← 1 to K do

9: Update q∗R(r
(Tm)
nk ) according to Equation (5.19)

10: end for

11: end for

12: end for

13: for each (a,b) s.t. 1 ≤ a ≤ b ≤M do

14: Update q∗λ(λ(Ta,Tb)) according to Equation (5.18)

15: end for

16: until Convergence

6 Experiments

In this section, we investigate the effectiveness of our algo-

rithm using both synthetic and real datasets.

6.1 Synthetic data We generate synthetic data based on

the generative model mentioned in Section 3. As a sanity

check, we first examine whether or not our algorithm can

recover the clusters if the network was generated from the

same modeling assumption as our approach. Our synthetic

data consists of four different types of objects, represented

by T1, T2, T3 and T4 respectively, clustered into two clusters,

denoted by C1 and C2. We generate {{rTm
n }

N(Tm)

n=1 }Mm=1 as

follows:

(6.21)

r
(Tm)
n1 ∼ Gamma(1, 0.1)

r
(Tm)
n2 ∼ Gamma(1, 1)

if vn ∈ C1,

r
(Tm)
n1 ∼ Gamma(1, 1)

r
(Tm)
n2 ∼ Gamma(1, 0.1)

if vn ∈ C2,

In the equations above, r
(Tm)
n1 is more likely to be larger

than r
(Tm)
n2 , if v

(Tm)
n ∈ C1, and vice versa. We generate

{λ(Ta,Tb)}1≤a≤b≤4 using

(6.22) λ(Ta,Tb) ∼ Gamma(0.1, 0.02)

such that the intensity for each edge type varies significantly.

To make the network more realistic, we add noise in gen-

erating the edges, i.e., instead of using Equation (3.4), we

generate W
(Ta,Tb)
ij using

(6.23) W
(Ta,Tb)
ij ∼ Pois(λ(Ta,Tb)(r

(Ta)
i · r

(Tb)
j ) + ǫ)
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where ǫ follows a zero-mean normal distribution with vari-

ance σ2. We let W
(Ta,Tb)
ij = 0, if λ(Ta,Tb)(r

(Ta)
i ·r

(Tb)
j )+ǫ ≤ 0

We generated 50 objects of each type in each of the

clusters resulting in a data size of 400. We test our model

on this data. Because GPNRankClus is based on a similar

generative process, it would be unfair to compare the exper-

imental results with other methods. Therefore, in this sec-

tion we concentrate on testing the GPNRankClus at different

noise level. We set the hyper-parameters of our model as

αr = βr = αλ = βλ = 1. We do not use any “seeds” in this

experiment. We vary the noise level σ2, and report clustering

accuracy as we vary the noise level in Figure 4(a).

As expected, we observe from Figure 4(a) that when we

increase the noise level from σ2 = 0.1 to σ2 = 10, the

clustering accuracy decreases from 93% to 75%. To better

understand how noise affects the ranking score and therefore

influence the clustering results, we plot the expected value

of ranking score {E(r
(T1)
n )}

NT1
n=1 at different noise level in

Figure 4. We observe from the figure that, when the noise

level is very low, i.e. σ2 = 0.1 illustrated in Figure 4(b),

the data points that belong to each cluster are located close

to the axes, which is consistent to the analysis in Section

4. In this case, the two clusters can be clearly separated by

the decision boundary defined in Equation (4.10). When we

increase the noise to the intermediate level, i.e. σ2 = 2,

illustrated in Figure 4(c), the data points deviate from the

axes, but our approach is still able to cluster most of the

points correctly. However, when we increase the noise level

to σ2 = 10, illustrated in Figure 4(d), the data points will

not be located close to the axes, and we can only separate a

subset of the data points into the correct clusters.

6.2 Experiments on Real Data We now test the perfor-

mance of our model on two real heterogeneous network da-

ta sets: DBLP and YELP data. In these experiments, we

set the parameters for GPNRankClus as follows: We let

αr = βr = αλ = βλ = 1. These parameter indicate we ap-

ply non-informative priors for our model. The parameters for

the seeds are set as follows: αS0 = αS1 = 1, βS0 = 0.01,

βS1 = 100. Note that these parameters will affect the pri-

or distribution for only the seed vertices, and experiments

show that it does not significantly influence the experimental

results as long as these values are set in a reasonable range.

We compare GPNRankClus with state-of-the-art algo-

rithms in terms of clustering ability. In addition to NetClus

[13], which is introduced in Section 2, we also compare G-

PNRankClus with the following two existing classification

methods for heterogeneous networks:

• GNetMine [17], a transductive classification method in

heterogeneous networks; and

• RankClass [18], a ranking-based classification method

in heterogeneous networks.

We are not able to run the multi-type spectral clustering [3]

Table 1: Classification Results on DBLP Data
Classification accuracy on authors

GPNRankClus NetClus GNetMine RankClass

Accuracy 92.28% 76.11%‡ 80.67% 91.12%

Classification Accuracy on Conferences

GPNRankClus NetClus GNetMine RankClass

Accuracy 100% 85%‡ 100% 100%

‡We test NetClus on the star-schema version of the DBLP dataset.

because of the size of the dataset. For NetClus, we set the

parameters λP = 0.9 and λS = 0.5. For both GNetMine

and RankClass, we follow the parameters used in [17] and

[18] and set parameters αi = 0.1 and λij = 0.2.

6.2.1 DBLP Dataset The DBLP network data includes

20 conferences from four related areas (database (DB), da-

ta mining (DM), machine learning (ML) and information

retrieval (IR)). It includes 28, 702 authors and their pub-

lications in these conferences. As described in Figure 1,

this dataset has three types of vertices (conferences, author,

words). We consider four types of edges (conference-author,

conference-word, author-word, author-author) in this net-

work. In this experiment, we used SIGMOD, KDD, ICML

and SIGIR as seeds in each of the research area respectively.

The classification accuracy on authors and conferences

are summarized in Table 1. In this table, we observe that GP-

NRankClus outperforms all other methods in terms of author

classification accuracy, achieving 92.28% accuracy. The per-

formance of RankClass perform slightly worse. GNetMine

is less effective in this task, achieving 80.67% accuracy. G-

PNRankClus, GNetMine and RankClass achieve perfect ac-

curacy in classifying the conferences. Because the DBLP

data is not in star-schema, we can not directly apply Net-

Clus on this dataset. Therefore, we test NetClus using the

star-schema version of the DBLP dataset, in which paper is a

center type and author, venue and words are linked via paper-

s. The performance of NetClus is worse, achieving 76.11%
accuracy on authors and 85% accuracy on conferences. Note

that the clustering performance of NetClus is better in [13],

but more seeds are used in their experiment.

Table 2 provides a summary of the ranking results

obtained by GPNRankClus. Note that in this dataset, we

do not have data that reflects the influence or reputation of

the authors and conferences, such as citations; therefore,

the ranking results is based on popularity. We observe

that the ranking results make sense. The highly ranked

terms coincide the representative keywords in each of the

fields. The top ranked conferences also agree with the top

conferences in each research field. Because we do not have

the ground truth, we are not able to measure the ranking

results quantitatively.
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(a) Clustering Accuracy vs. Noise Level (b) E(r
(T1)
n ) under noise level

σ2 = 0.1
(c) E(r

(T1)
n ) under noise level

σ2 = 2
(d) E(r

(T1)
n ) under noise level

σ2 = 10
Figure 4: Plots for synthetic data

Table 2: Ranking Results on DBLP Data
Top-5 Terms in Each Cluster

DB DM ML IR

1 data data learning web

2 database mining knowledge retrieval

3 databases learning system information

4 query clustering reasoning search

5 system classification model text

Top-5 Conferences in Each Cluster

DB DM ML IR

1 VLDB KDD IJCAI SIGIR

2 ICDE PAKDD AAAI WWW

3 SIGMOD ICDM ICML CIKM

4 PODS PKDD CVPR ECIR

5 EDBT SDM ECML AAAI

Business Review

User

Word

given to

given by

contains

Figure 5: Network Structure of the YELP Data.

6.2.2 YELP Dataset The YELP network data contains

four types of vertices: businesses (B), reviews (R), users (U),

and words(W). There are three types of edges between vari-

ous types of objects, including edges between businesses and

reviews, representing the review given to the business; edges

between reviews and users, representing the review given by

the user; edges between reviews and words, representing the

review containing the corresponding word. The relationship

network of the YELP data is shown in Figure 5.

In this dataset, each business is associated with one

or more hierarchical categories. This data can also be

interpreted with different clustering tasks. We focus our

analysis by examining a subset of the YELP dataset for the

following three different clustering tasks:

• Level-1 categories: We deal with the businesses in the

following categories: health & medical; food; shop-

ping; beauty & spas. It involves 2, 747 businesses,

49, 429 reviews and 29, 612 users.

• Restaurant categories: We deal with the restaurant

businesses in the following categories: Sandwiches;

Thai; American (New); Mexican; Italian; Chinese. It

involves 966 businesses, 37, 066 reviews and 23, 946
users.

• Shopping categories: We deal with the shopping busi-

nesses in the following categories: Eyewear & Opti-

cians; Books, Mags, Music & Video; Sporting Goods;

Fashion; Drugstores; Home & Garden. It involves 644
businesses, 7, 996 reviews and 5, 717 users.

In each task, we remove the businesses that do not fall

in the categories we are interested in. We also remove the

businesses with one or no review, because we do not have

enough information to cluster these businesses. In each task,

we select one business with the most reviews in each of the

categories as seeds.

In addition to classification accuracy, we also report the

Normalized Mutual Information (NMI) between the predict-

ed labels and the actual labels. The NMI between two ran-

dom variables X and Y is defined as [19]

(6.24)

∑

x∈X

∑

y∈Y p(x, y)[log p(x, y)− log p(x)p(y)]
√

H(X)H(Y )
where H(X) and H(Y ) are the entropy for random variables

X and Y respectively. NMI is a measure of the variables

mutual dependence. The NMI ranges from 0 to 1, where a

higher value indicates X and Y agree with each other. We

measure NMI here but not in DBLP, because the classifica-

tion accuracy in DBLP is very high. A high accuracy already

implies a high NMI.

The accuracy and NMI are summarised in Table 3. We

observe from the table that the classification accuracy is low-

er in general compared to the DBLP data. This is due to that

the YELP data is much noisier. The businesses are classified

merely according to online reviews; however, there are many

reviews conveying no categorical information, containing

only words such as “place”, “good” and “like.” In Table 3,

we observe that GPNRankClus achieves higher classification

accuracy than other methods in all of the tasks. The classifi-

cation accuracy of GPNRankClus is higher than GNetMine

by 9.09% and 17.45% in the Level 1 and Restaurant tasks,

respectively. In the Shopping task, GPNRankClus achieves

almost identical accuracy as GNetMine. The accuracy differ-

ence between GPNRankClus and RankClass is even higher
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Table 3: Classification Results on the YELP Data
Classification accuracy on businesses

GPNRankClus NetClus GNetMine RankClass

Level 1 56.25% 17.78% 47.16% 37.19%

Restaurant 66.81% 15.31% 49.36% 57.11%

Shopping 64.62% 13.28% 64.45% 32.58%

NMI on businesses
GPNRankClus NetClus GNetMine RankClass

Level 1 0.5590 0.0168 0.1387 0.1579

Restaurant 0.6606 0.0187 0.2346 0.3044

Shopping 0.4721 0.0313 0.3617 0.2335

in these three tasks, ranging from 9.7% to 32.04%. The clus-

tering results given by NetClus are not significantly different

from random guess. To get a more reasonable results, Net-

Clus usually require more and stronger seeds.

In terms of NMI, GPNRankClus outperforms other

methods more significantly. By observing the confusion ma-

trix, we found that although the predicted labels given by

GPNRankClus do not perfectly agree with the actual label-

s, GPNRankClus found other meaningful clustering struc-

tures. However, the misclassification results for GNetMine

and RankClass are more random, resulting in significantly

lower NMI values. Due to the limited space, we introduce

the detailed confusion matrix in the supplemental material-

s. The supplemental materials and the code are available at

http://www1.ece.neu.edu/˜jchen.

7 Conclusion

In this paper, we propose to simultaneously cluster and rank

items in the heterogeneous information network with arbi-

trary schema. In order to solve this problem, we introduce

a new concept ranking score that conveys both ranking and

clustering results. Based on this concept, we propose a novel

generative model, called GPNRankClus, to model the like-

lihood of the observed heterogeneous information network.

More specifically, Gamma-Poisson model is used, where we

model the ranking score of each vertex in each cluster as

a gamma distribution, and the number of edges between t-

wo vertices as a Poisson distribution that takes the ranking

scores of the two vertices and the strength of link type as pa-

rameters. Experiments on DBLP and YELP data show that

our method outperforms the state-of-the-art methods.
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